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On the structure of nonlinear evolution equations 
integrable by the &-graded quadratic bundle 

B G Konopelchenko and I B Formusatic 
Institute of Nuclear Physics, 630090, Novosibirsk 90, USSR 

Received 4 January 1982 

Abstract. The general form of nonlinear evolution equations and their Backlund transfor- 
mations connected with the quadratic in the spectral parameter, Z2-graded, arbitrary-order 
linear matrix spectral problem is found. The Hamiltonian structure of the integrable 
equations is discussed. The infinite family of Poisson brackets which corresponds to the 
class of equations under consideration is given. Relativistic-invariant integrable equations 
are considered. The explicit forms of elementary and soliton Backlund transformations 
are found. A nonlinear superposition principle is obtained. 

1. Introduction 

The inverse scattering transform (IST) method permits us to investigate a large number 
of various partial differential equations (see e.g. Zakharov et a1 1980, Bullough and 
Caudrey 1980). One of the main problems of the IST method is the problem of 
description of the class of equations to which this method is applicable. A very simple 
and convenient description of the equations integrable by the second-order linear 
bundle was given by Ablowitz et a1 (AKNS) (1974). The method proposed by AKNS 

(AKNS method) has been generalised to the linear bundle of arbitrary matrix order 
(Miodek 1978, Newel1 1979, Kulish 1980a, Konopelchenko 1980a, b, 1981a, c), the 
second-order quadratic bundle (Gerdjikov et a1 1980) and an arbitrary polynomial 
bundle (Konopelchenko 1981d). The linear bundle with Z2 grading has been also 
considered by Konopelchenko (1980~). In the framework of the AKNS method one 
can construct the infinite-dimensional groups of Backlund transformations and investi- 
gate the Hamiltonian structure of the whole classes of the integrable equations. These 
are important advantages of the AKNS method. 

In the present paper we consider the quadratic bundle 

2= (aA2+2PA)A$+(aA + p ) P ( x ,  t )$  (1.1) i ax 

where A is a spectral parameter, a and p are arbitrary constants and 

where I N  and I M  are identical square matrices of order N and M respectively, Q is 
an N x M rectangular matrix and R is an M x N rectangular matrix. Matrix elements 
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of the potential P(x ,  t )  are elements of an infinite-dimensional commutative &-graded 
algebra (superalgebra). We assume that P ( x ,  t )  + 0 as 1x1 + W. 

We find the general form of nonlinear evolution equations integrable by the bundle 
(1.1) and construct the infinite-dimensional group of Backlund transformations for 
these equations. We show that all the equations integrable by (1.1) are Hamiltonian. 
We calculate the infinite family of Poisson brackets connected with these equations. 

In the paper we consider the relativistic-invariant equations integrable by the 
bundle (1.1). Among these relativistic-invariant equations are both new ones and 
equations which are equivalent to already known equations. In particular, the 
integrable equation of the form (3.9) at N = p = 2, M = q = 1, R(L') = :(L')-' and 
some special P(x ,  t )  is equivalent to the equations of the massive Thirring model with 
anticommuting fields. 

We also discuss the structure of the Backlund transformations group. We introduce 
some special Backlund transformations-the so-called elementary Backlund transfor- 
mations. An arbitrary discrete Backlund transformation is a product of the elementary 
Backlund transformations. We obtain the nonlinear superposition principle. It permits 
us to calculate the infinite family of the solutions of the integrable equations in a 
purely algebraic way. The gauge equivalence of the bundle (1.1) to the linear bundle 
and some other bundles is also discussed. 

Let us emphasise that the nonlinear evolution equations integrable by (1.1) contain 
in the general case both classic boson fields and classic anticommuting fermion fields. 

The paper is organised as follows. In 9 2 we obtain some important relations and 
calculate the recursion operators. The general form of the integrable equations and 
their Backlund transformations is found in P 3. In 9 4 the Hamiltonian structure of 
the integrable equations is discussed. The relativistic-invariant equations are con- 
sidered in § 5 .  The equivalence of the bundle (1.1) to the linear bundle is demonstrated 
in § 6. In 9 7 the structure of the Backlund transformations group is discussed and 
the elementary Backlund transformations are calculated. The nonlinear superposition 
principle is obtained in 9 8. In the conclusion some reductions of the general bundle 
( 1.1) are discussed. 

2. Preliminary relations and recursion operator 

2.1. 

For convenience we present here some definitions and notations concerning graded 
algebras (see e.g. Berezin 1966, 1979, Kac 1977, Leites 1979). An algebra g is called 
a &-graded algebra (superalgebra) if it admits a decomposition into a tensor sum 
g = goOgl of even (go) and odd (gl) components. To any homogeneous b E g one 
assigns a number S ( b )  (parity) which can take two values: 0 or 1. An element b is 
called even if S ( b ) = O  and odd if S ( b ) =  1. The component go consists of the even 
elements and the component gl contains the odd elements of g. A &-graded algebra 

is called commutative if for any U ,  b E g the equality [a ,  61 = ab -(-l)6'")6'b'bu = 0 
is satisfied. 

We will assume that the elements of the potential P(x ,  t )  belong to the infinite- 
dimensional commutative &-graded algebra, i.e. 

def 

P/n(x ,  t )Pik(x,  t )  (i, k, l ,n  = 1 , .  , , , N + M ) .  6(P i , )6 (P , , )  pik(x, l )P/n(& t ) =  (-1) 
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So the even elements of P(x,  t) are classic boson fields and the odd elements are 
anticommuting variables (classic anticommuting fermion fields). 

We will follow Berezin (1979), Kac (1977) and Leites (1979) and represent matrices 
of order N + M with &-graded algebra valued elements in the form P = (: g), where 
a is a square p x p matrix, S is a square 4 x q matrix, /3 is a rectangular p x 4 matrix, 
and y is a rectangular 4 x p matrix (4 + p  = N + M ) .  The matrices Q and S consist of 
even elements of P. The matrices p and y contain odd elements of P. A space of 
matrices of such type is denoted by Mat(p, 4) .  The algebra Mat(p, q )  is isomorphic 
to the superalgebra gl(p, 4 )  (see e.g. Kac 1977, Leites 1979). The parity S ( P i k )  of 
the element P;k of the matrix P can be represented as follows: S ( P i k ) = S ( i ) + S ( k )  
(mod2), where S ( i ) = O  for l s i s p ,  S ( i ) = l  for p < i s M + N .  The matrices P E  
Mat(p, q )  have many properties which are analogous to the properties of the usual 
matrices (see e.g. Kac 1977, Leites 1979). In particular, the usual matrix trace 
has an analogue which is called the supertrace and defined as follows: 

st r( QP) . str P = X i = ,  (-l)8(i)Pii. For the supertrace we have str (PO) = (-1) 
In the present paper we will deal only with even matrices ( S ( P )  = 0). 

So we assume that potential P(x,  t )  E Mat(p, q )  ( p  + q = N + M). In the general 
case rectangular matrices Q and R contain both even and odd elements. At p = N 
and 4 = M the matrices Q and R have only odd (anticommuting) variables. 

Further, let 4 be an arbitrary square matrix of order N + M. Let us represent it 
in the form 4 = (:; z:), where q51 and d4 are respectively N x N and M x M matrices 
and q52 and d3 are respectively N x M and M x N rectangular matrices. We will 
denote 40 = (3 0'). Let us note that (4040)~ = 0, ( ~ o J I F I F  = 404~ 
and (4F4F)~ = 0. These properties of the decomposition I$ = 4o + c $ ~  will be used often 
in what follows. The decomposition 4 = (bO+dF is the Fitting decomposition of the 
matrix superalgebra Mat( p ,  q )  with respect to the matrix A (at q = 0 see e.g. Konopel- 
chenko 1980a, b, 1981a). For the supermatrix of the potential P(x ,  t) = PF(x, t ) .  

Now we proceed to the construction of transformations and evolution equations 
connected with the bundle (1.1). At = 0 the bundle (1.1) has been considered 
(briefly) by Konopelchenko (1981d) and the linear bundle with Z2 grading was 
considered by Konopelchenko (1980~).  Since the main steps of our calculations are 
the same as in Konopelchenko (1980a, b, c, 1981a, c, d) we will omit most of the 
intermediate calculations. 

Let us introduce the fundamental matrix-solutions (assuming P(x ,  t)  -* 0 as 1x1 +CO) 

F+(x,  t, A )  and F-(x,  t, A )  given by their asymptotic behaviour: 

N + M  R ( P ) d ( O )  

4 def 
&) and 4 F  = (& 

F+(x,  t, A )  exp[-i(aAZ+2&4)x] - 1, 
x-+m 

F-(x, t, A )  exp [-i(aA + 2@A)x] - 1, 
x- -m 

and the scattering matrix S(A, t): 

F+(x,  t, A )  =F-(x ,  i, A ) S ( A ,  t ) ,  

Matrices F', F - ,  S have the same 2 2  structure, i.e. F', F - ,  SE Mat(p, 4). 

of the problem (1.1). One can show that the following relation holds: 

S'(A, t ) -S (A ,  t )  = - i (aA + p )  

Let P and P' be two different potentials and F', F"' be the corresponding solutions 

+m 

dx (F'(x, t, A))-'(P'(x,  t ) - P ( x ,  t))(F'(x, r, A)) ' .  
J-m 
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By virtue of (1 .1)  there exists a correspondence between the transformations P+ P' 
and transformations S + S'. We will consider transformations of the scattering matrix 
only of the form 

(2.2) S(A, t)+S'(A, t )  = B-'(ah2+2PA, t)S(A, t)C(aA2+2PA, t )  

where B ( d 2  + 2PA, t )  and C(aA 2 +  2pA, t )  are arbitrary supermatrices commuting 
with A, i.e. Bo = B, CO = C. 

Combining the relations (2.1) and (2.2) and taking into account the identity 

($-'(A, t ) ( l  -B(aA2+2PA, t))S'(A, f))F 

a I, ax 

+m 
- -- dx-((F'(x, r, A ) ) - ' ( l  -B(aA2+2PA, t))(F'(x, t, A) ) ' )F  

+m 

= (aA + P )  I-, dx((F'(x, t, A))-'[P(x, t ) ( l -  B(aA2+2PA, t ) )  

-(1 -B(ah2+2PA, t))P'(x, t)](F'(x, f, A))')F, 

we obtain 
+m 

dx((F'(x, t, A))-'(B(aA2+2PA, t)P'(x, t )  I-, 
-P(x,  f)B(ah2+2@A, t))(F+(X, t, A ) ) ' ) F = O .  (2 .3)  

Let us represent the matrix B(aA2+2pA, t )  in the form B(aA2+2pA, t)  = 
E , = ,  B,(aA2+2PA, t)Hi where Bi are some functions, and the matrices H, ( i  = 
1,. . . , N 2 + M 2 )  form a basis of the subalgebra of matrices which commute with the 
matrix A. Rewriting the equality (2.3) over the components one obtains 

N * + M 2  

+m ++ 
1 (HiP'(x, t)-  P(x, t)Hi)Bi(aA2 + 2PA, t)$kF"'"'(x, t, A ) )  = 0,  

2.2 Recursion operator 

Using equation (1 .1)  and the corresponding equation for F-I, one can obtain the 

following equation for the quantity d: 

"(" " A)=i(aA2+2PA)[A, &(x, t, A ) ] + i ( a A  + P )  

++ 

+,i 
+*+ 

ax 
++ 

x (P'(x, r)$(x, t, A )  - z(x ,  t, A )P(x, t ) ) .  (2.5) 
Expressing the quantity 40 through the quantity (bF and taking into account that 

++ def +-$ d: ( x  = +m, t, A )  = 0 and [A, dF] = 2AdF, we obtain (x = d ~ )  
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As a result 

Ax(A)=(aA2+2/3A)x(x, t , A )  (2.7) 

where 

i a  (ia)P'( -- A -+ ip29), 
ax 1=0 2 ax 

CO i a  
A = (1 - iaY)-'( - 2 A -+ ip29) = 

By virtue of (2.7), for any function Bi(aA2+2pA, t) which is entire on aA2+2pA 
one has 

Bi(aA2+2/3A, t)x(x, t, A)=Bi(A,  t)x(A). (2.8) 

We will also need the operator A+ adjoint to the operator A with respect to the 
bilinear form 

+W 

(4, 4) = dx Str('$F(X)+F(X)). 
-m 

m =(- -A-+iP2f)  i a  c (ia)'U+)' 
2 ax l = O  

The operator A+ plays a fundamental role in our further constructions. At q = 0 
the operators A and A+ coincide with recursion operators given by Konopelchenko 
(1 98 1 d). 

3. General form of the integrable equations and their Backlund transformations 

Let us consider the relation (2 .4)  with entire functions Bi(aA2+20A).  By virtue of 
(2 .8)  the equality (2 .4)  is equivalent to the following: 
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From (3.1) one obtains 

where the operator A+ is given by formula (2.9) 
The equality (3.2) is fulfilled if 

N 2 + M 2  

Bi(A+y t)(H,P'-PHi) = 0. 
1 = 1  

(3 .3)  

Thus we find the transformations P + P' which correspond to the transformations 
S -* S' of the scattering matrix of the form (2 .2) .  These transformations are given by 
relation (3 .3)  where Bl(@,  t )  are arbitrary functions entire on p. 

The transformations (2 .2) ,  (3.3) form an infinite-dimensional group. This group 
acts on the manifold of potentials { P ( x ,  t ) }  by formula (3 .3)  and on the manifold of 
the scattering matrices {S(A, t ) }  by formula (2 .2) .  The group of transformations (2 .2) ,  
(3 .3)  plays a fundamental role in the analysis of the nonlinear equations connected 
with the bundle (1 .l) and their transformation properties. 

The infinite-dimensional group of transformations (2 .2) ,  ( 3 . 3 )  contains transforma- 
tions of various types. Let us consider a one-parameter subgroup of this group given 
by 

1' N * + M 2  

B(aA2+2PA, t ) =  C(aA2+2PA, t ) =  exp(-i [ ds R1(aA2+2PA, s))H,  (3 .4)  
i = l  

where ai (aA2+2PA,  t )  are some (in general arbitrary) functions entire on aA2+2PA. 
It is not difficult to show that the transformation (2 .2)  with B and C given by (3 .4)  
is a displacement in time t :  

( 3 . 5 )  

The corresponding transformation of the potential is P(x,  t )  + P'(x, t )  = P(x, t ' )  and is 
determined by the relation" 

S(A, t)-+S'(A, t ) =  B-'(aA2+2PA, t )S (A ,  t)B(aA2+2PA, t )  =S(A, t ' ) .  

N 2 + M 2  I' c exp (4 [ ds .CTi(A', s ) ) (HiP(x ,  t ' )  - P(x, t ) H i )  = 0 (3 .6)  
i =  1 

where in the operator A+ one must put P ( x ,  t )  = P(x, s). 
The relation (3 .6)  determines in implicit form the flow Yn : P(x,  t )  + P(x, t ' )  or, in 

other words, the evolution system. This evolution system can also be described by a 
certain nonlinear evolution equation. Indeed, let us consider an infinitesimal displace- 
ment in time t + t' = t + E ,  E + 0. In this case P(x ,  t ' )  = P(x,  t )  + &aP/ar and, keeping 
terms of the first order in E ,  from (3 .6)  one obtains 

where 

def 
L+(P)  = A'(P'= P ) ,  

(3 .7)  

t Transformations of such type were first considered by Calogero and Degasperis ( 1  976) for the second-order 
linear bundle (q  = 0). 
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i.e. 

where 
L' = (-sAa/ax +iP21')(1 -iaZ+)- '  

For the scattering matrix we correspondingly obtain 

dS(h, t)/dt = i[ Y(h ,  t ) ,  SO, t ) ]  

where 
N * + M 2  

i =  1 
Y(h,  t ) =  Rj(ah2+2PA, t)Hi. 

The nonlinear evolution equation (3.7) is an infinitesimal form of description of 
the flow Yn. The relations (3.6) which do not contain the derivative aP/at are the 
'integrated' form of the differential equations (3.7). The class of the evolution 
equations (3.7) is characterised by the integers N and M, by the recursion operator 
A+ and by N 2 + M 2  arbitrary entire functions a,, . . . , n N 2 + ~ 2 .  

The nonlinear evolution equations (3.7) are just the equations integrable by the 
IST method with the help of the bundle (1.1). If one generalises the IST method to 
the case of 2 2  grading, one can find the exact solutions of the equations (3.7). 

One can show that the more general class of the integrable equations is connected 
with the bundle (1.11, namely the equations (3.7) with arbitrary functions ni(ah2 + 
2PA, t)  meromorphic on a h  + 2ph. 

The class of the equations (3.7) contains a subclass of equations with Y(h,  t )  = 
R(ahz + 2PA, t )A where f2(aA2 + 2PA, t )  are arbitrary functions meromorphic on a h  + 
2PA. These equations are of the form 

aP(x, t ) /a t  - 2iO(L', t ) A P  = 0. (3.9) 

In the particular case n(p,  t) = -2p2 equation (3.9) is? 

ax 

In terms of Q and R the equation (3.10) is a system 

a x  

(3.10) 

(3.11) 

ax 

where Q and R are respectively N x M and M x N rectangular supermatrices. 

equations (39) describe pure fermionic classical systems. For example, at 
At p = N, q = M matrices Q and R contain only anticommuting variables and the 

M = q = l ,  N = p ,  R = Q + =  

t For calculations the relations I'AP = 0, (I')2aP/dr = 0 are useful. 
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and real a and p the system (3.1 1) is reduced to the N-component combined nonlinear 
Schrodinger equation with anticommuting fields: 

N 
( k  = 1,. . . , N )  (3.12) 

where 

For a = O  equations of the form (3.11) with Z2 grading have been considered by 
Kulish (1980b). 

Let us consider now the transformations (3.3) with matrices B and C, commuting 
with the matrix Y(aA2 + 2pA, t ) ,  i.e. B = Bo( y,, C = CO, y )  and aB//at = aC/at = 0. 
These transformations, as follows from (2.2), preserve the evolution law (3.8) of the 
scattering matrix. Therefore they transform the solutions of a certain equation of the 
form (3.7) into solutions of the same equation. Thus, the transformations (3.3) with 
B = Bocu, and aB/ar = 0 are auto Backlund transformations for the equations (3.7). 
These auto Backlund transformations form an infinite-dimensional group. 

The transformations (3.3) with aB/at f 0 form an infinite-dimensional group of 
generalised Backlund transformationst; they transform the solutions of a certain 
equation of the form (3.7) into solutions of another equation of the form (3.7). In 
particular, the transformation (3.6) is the generalised Backlund transformation from 
the equation aP/at = 0 to equation (3.7). 

Let us consider in conclusion some concrete equation of the form (3.7). We fix 
the matrix Y(A, t )  and let Y(A, t )  be a semisimple (i.e. diagonalisable) matrix. It is 
not difficult to show that due to the evolution law (3.8) the projection of the scattering 
matrix onto the subalgebra of matrices commuting with Y(A, t ) ,  is time independent: 

Therefore at any A the quantity Socy,(A) is an integral of motion. From this 
infinite set of inexplicit integrals of motion one can extract a countable set of explicit 
and local integrals of motion using the standard procedure (see e.g. Zakharov et a1 
1980, Konopelchenko 1981c, d). 

4. Hamiltonian structure of the integrable equations 

Let us consider the integrable equations of the form (3.9) with 

m 
n(L+,  t )  = 1 o,(t)(L')" 

n = O  
(4.1) 

t Generalised Backlund transformations were first considered for the linear second-order bundle by 
Calogero and Degasperis (1976). 
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where w n ( t )  are arbitrary functions. The relation (2.1) plays an important role in the 
proof of the Hamiltonian character of equations (3.9). From (2.1) it follows that 

SS,,,(A) = -i(-1)6'n'(aA + P )  
+W 

dx str(SP(x, t)$""'(x, t, A ) )  (n  = 1,.  . . , N + M )  

(4.2) 

where SP is an arbitrary variation of the potential P(x ,  t ) ,  SS is the corresponding 

variation of the scattering matrix and $ l n ) ) k l  = (F+)kn(F-);' .  From (4.2) we obtain 
a basic variational equality 

I_, 

def 

(4.3) 

where $/SP denotes a left variational derivative (see Berezin 1966, 1979). 

we find that 

(-$Adlax + iP'Z+)A$""' 

-+ 
Further forming for the quantity q 5 ( i n )  an equation analogous to the equation (2.5), 

= (aA2+2PA)(1 -iaZ+)Agin)+i(aA + P ) [ P ( x ) ,  ?+?'(x = -00, t)] (4.4) 
where 

-+ n n )  Since (4; 
(-$Aa/ax +iP'Z+)An(x, t, A )  

( x  = -00, t, A ) ) k . I  = SklSnn ( A )  one obtains from (4.4) the relation 

=(aA2+2PA)(1-iaZ+)An(x, 1, A)-(ah +P)'AP 

where 

Acting from the left on the equality (4.5) with the operator L', one obtains 

[L'-(aA2+2PA)]$'iBn= (crA +p)'L+AP (4.7) 
where 

(4.8) 

Let us expand the.left- and right-hand sides of the equality (4.7) into asymptotic 
series in (ah2+2PA)-'. As a result we obtain the following system of relations: 

-&"I) = ~ L + A P ,  3 ~ + ' i ~ n ~ ~ ) - & m ( ~ )  = ~'L'AP, (4.9) 
L + B n ( k )  = gn(&+l) (k = 1 ,2 ,3 , .  * .), 
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where 
m 

n(x, t, A ) =  ((YA~+~PA)-"II(~,(X, t ) .  
n = O  

From the recurrence relations (4.9) we have 

(n = 1,2,3, .  . .). (L ' )nAP=g  ntl (-L)(--) P2 n - l - k  n ( k )  

k -0  2ff ff 
(4.10) 

The relations (4.10) can be rewritten in the form 

( n  = 1,2,3, .  . .) (4.11) 

With the use of (4.1 1) the evolution equation (3.9) with the function fl(L') of the 
where q is an arbitrary integer. 

form (4.1) can be represented as 
W 

~ P ( x ,  t)/at = (L+)% 1 o,,(t) 
n = O  

1 a"-'n(x, t, A )  
k = O  ff (n  - q ) !  a[(aA2+2/?A)-1]n-q (4.12) 

Let us note now that for the quantity n(x, t, A )  from the relations (4.3) and (4.6) 

(4.13) 

where ( S a ) , k  = 8,ksii and &kl = 8kl(-1)'(k). BY virtue of (4.13) equation (4.12) is 
equivalent to the following: 

aP/at = ( L ' ) ~ ~ ( & ~ - , / S P ~ ) &  (4.14) 

one has 

n(x, f ,  A )  = i(g/SPT(x, t ) )  str[A In S,(A)]s 
def def 

where 

(4.15) 
n - q  1 a"-' str[A In & ( A ) ]  

n = O  k = O  - (  ff ---) - (n-q)! ~[ (CYA~+~PA)- ' ] " -~  

1 2 n . - q - l - k  P m 

x - ~  = i 1 w n ( t )  

Finally, it is not difficult to see that equation (4.14) is Hamiltonian; namely, it can 

(4.16) 

with respect to the infinite set of Hamiltonians %-q (4.15) and Poisson brackets { },: 

be represented in the Hamiltonian form 

a m ,  t ) / a r  = V(X, t ) ,  %-,I, 

s' cm 

SPT(y, t )  ( L + ) q g  {9, %}q zf dy str( 9 
-m 

(4.17) 

where 4 is an arbitrary integer, 9s'/SP denotes the right variational derivative of 9 
(see e.g. Berezin 1966, 1979) and the operator 9 is given by formula (4.8). 

The fact that the brackets (4.17) are indeed the Poisson brackets, i.e. for even 
functionals 9 and %they are skew-symmetric and satisfy the Jacobi identity, is proved 
by direct calculation. However, for odd functionals the brackets (4.17) are symmetric. 
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{Z, 9}, and the brackets (4.17) satisfy a In the general case {9, X}G = (-1) 
Z2-graded version of the Jacobi identity (see e.g. Berezin (1979), Kac (1977)). 
Therefore (4.17) is a generalisation of the usual Poisson brackets to the case of the 
Z2-graded algebra. The brackets (4.17) convert the algebra of functionals into a Lie 
superalgebra. In the mechanics of points such a generalisation of the Poisson brackets 
was considered by Berezin and Marinov (1977), Casalbuoni (1976), Berezin (1979). 

In the particular case a = 0, P = 1 the family of Poisson brackets (4.17) converts 
into the family of Poisson brackets connected with the Z2-graded linear bundle with 
P = (: f) (see Konopelchenko 1980~).  At q = 0 the family of Poisson brackets (4.17) 
coincides with those given by Konopelchenko (1981d). 

The fact that an infinite set of Poisson brackets is connected with integrable 
equations was first noted by Magri (1978; see also 1980). For the second-order linear 
bundle the hierarchy of Poisson brackets has been considered by Kulish and Reiman 
(1978). The hierarchies of Poisson brackets for integrable equations have been 
considered by Gelfand and Dorphman (1979, 1980), Reiman and Semenov-Tyan- 
Shansky (1980), Kulish (1980a), Konopelchenko (1981c, d, e, 1982). 

Thus, it is shown that equations (3.9) are Hamiltonian with respect to the infinite 
set of Hamiltonian structures. The closed symplectic 2-forms which correspond to 
the Poisson brackets (4.17) are 

6 ( 9 ) 6 ( Z )  

+m 

W'"(S~P, S2P) = 5 dx S~~(S~~-'(L')-~S~P-S~~-'(L+)-~S~P) 

q = 0, *l, *2,, . . , 
The two simplest Poisson brackets from the family (4.17) are 

$2 
= 2i j-r dx str( A 7 SP ( x )  SP (x) 

(4.18) 

(4.19) 

(4.20) 

def 
Let us introduce the brackets { , } = a{ , }o+/32{ , }-,. It is easy to see that 

(4.21) 

The brackets (4.21) are the Poisson brackets: the skew symmetry of {@, 5%') is 
obvious, and the fulfilment of the Jacobi identity immediately follows from the 
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independence of the kernel of the brackets (i.e. the operator 2P2A - iaa/ax)  from 
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P(x ,  t ) .  

5. Relativistic-invariant equations 

In 0 3 we considered examples of the equations (3.9) with entire functions a(,!,’). 
For meromorphic functions n(L+, t )  the equations (3.9) can be rewritten in the 
equivalent form 

(5.1) 

where g(L+, t) andf(L’, t )  are entire functions on L’ such that n(p,  t )  =f(/..~, f ) / g ( p ,  t ) .  
Among the equations (3.9) with singular functions n(L’, t ) ,  the equations (3.9) 

with p = O  and n = w ( L + ) - ’  where w is a constant are of the most interest. In this 
case, since (L+)-’ * = 2i(l - i d + )  JI, dy e ,  equation (3.9) is 

g(L+, t)aP/at - 2if(L+, t ) A P  = 0 

dy P(y, t)+2iwa[ P ( x ) ,  /-: dy [ P(y), A dz P ( z ) ] ]  = 0. (5.2) 
at -m 

Equation (5.2) is invariant under the Lorentz transformations 

x -* x’ = px, t + t ’ = p - l t ,  P(x,  t)-*P’(x’, t’) =p-1’2P(x,  t ) ,  (5.3) 
where p is a parameter of the Lorentz transformation. 

W ( x ,  t )  the equation (5.2) is a local one: 
Let us introduce a matrix W ( x ,  t) such that P ( x ,  t )  = a W ( x ,  t) /ax.  For the ‘potential’ 

(5.4) 

0 We recall that A = (6. and W ( x ,  t )  E Mat(p, 4). The equation (5.4) is Lorentz 
invariant too. Under the Lorentz transformations W ( x ,  t)  -* W’(px, p - l t )  = p1’2 W ( x ,  t ) .  
In the components W l ( x ,  t)  and W2(x ,  t)( W = (& ,,’)) which are rectangular N x M 
and M x N matrices, equation (5.4) is the system 

W 

For M = N = 1, 4 = 0 the system of equations ( 5 . 5 )  was first obtained by A V 
Mikhailov (see Gerdjikov et a1 1980) and their connection with the quadratic bundle 
(1.1) ( N  = M = 1, 4 = 0) was discussed by Gerdjikov et a1 (1980). 

System (5.5) contains as particular cases some interesting relativistic-invariant 
equations. For example, for real w and (Y and under the reduction W l ( x ,  t )  = 
W: ( x ,  t )  = U ( x ,  t )  the system ( 5 . 5 )  is equivalent to the matrix equation 

-+4wU-2iwa 
ax 

a’ u 
ax at 

For M =  1 equation (5.6) is (UT= (UI, .  . . , UN)) 
(5 .6)  

N 
-+4wUi-2iwcy uluk+ui 1 ( i =  1 , .  . . , N ) .  (5.7) 
a vi 

ax at ax k = l  k = l  ax 
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Let us note that among the fields VI,. . . , UN which satisfy the system of equations 
(5.7), p fields U1,.  . . , U, are classic anticommuting fermion fields and N - p  fields 
(Up+l, . . . , U N )  are classic boson fields. For p = N the system of equations (5.7) 
describes the pure fermionic classic system. For p = N + 1 equations (5.7) describe a 
pure bosonic system. In particular, for N = 1, p = 2 equations (5.7) reduce to the 
equation for one complex-valued boson field U l ( x ,  t )  with mass 4 w :  

(5 .8 )  

In the case N = p = 2 and under the reduction U l ( x ,  t) = $(x ,  t), U 2 ( x ,  t )  = -y$*(x, t) 
where y is an arbitrary constant, the system (5.7) reduces to the equation for one 
Grassmann-valued fermion field $ ( x ,  t ) :  

The field + ( x ,  t )  satisfies the relations 

$ ( x ,  t)$(Y, t )  + $(Y, M x ,  t )  

= $ ( x ,  d$+(Y, t )  + $+(Y, M X ,  t )  

= $+(X,  t)++(y, t )  + $+(Y, t )$ ' (x ,  t )  = 0. 

The relativistic-invariant equations (5.4)-(5.9) describe some two-dimensional (one 
time coordinate and one spatial coordinate) models of field theory, integrable by the 
IST method with the help of the bundle (1.1).  These equations may have other 
applications too. 

Let us now attract attention to the fact that equation (5.2) can be rewritten in the 
equivalent form (5.1), namely in the form 

(5.10) 

where we put w =a. The left-hand side of equation (5.10) is an infinite 'power' series 
in the operator Z'. This series Z;"=,, (ia)L(Z+)'aP/at contains only two non-vanishing 
terms (with I = 0 , l )  in the two cases. 
First case: N = M =  1, q =0,  a = 1.  In this case I"=O and equation (5.10) at 
P = ($ y) is equivalent to the equations of the massive Thirring model (Gerdjikov 
eta1 1980). 
Second case: N = 2, M = 1, p = 2, a = 1 and 

aP 
at (1  - iaI+)-l - = - I_, dY P(Y) 

(5 .11)  

where Q(X, t )  is a Grassmann-valued variable and + denotes an involution in the 
Grassmann algebra (see e.g. Berezin 1966, 1979). In this case Z+2dP/d t=0  and 
equation (5.10) reduces to the equation 

(5.12) 

plus the corresponding equation for Q+(x ,  t ) .  
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Let us introduce quantities rLl(x, t )  and &(x, t ) :  

From equation (5.12) it folloGXYii 

(5.14) 

(5.15) 

Let us recall that cp(x, t)cp'(y, t )  +cp+(y, t)cp(x, t )  = 0. If we combine the relations (5.141, 
(5.15) and take into account the definition (5.13), we obtain 

dy - (cp(y, t)cp'(y, t ) )  = -4&(X, tML; (x, t ) .  (5.16) 

With the use of (5.16) and the definitions (5.13) we obtain from (5.12) the following 
equations: 

" a  
at 

i-- w ( X ,  t )  i-- t,bl+Jlzt+b;$l =O.  (5.17) 
ax 

*2 + *I*:*, = 0, 
at 

Let us note that the first equation (5.17) follows from equation (5.12) and the 
second equation (5.17) is obtained directly from the definitions (5.13). 

Equations (5.17) are just the equations of the massive Thirring model with anticom- 
muting fields. The applicability of the IST method to these equations has been 
demonstrated by Izergin and Kulish (1978). 

Thus, in the two cases considered equations (5.10) are equivalent to the equations 
of the massive Thirring model: in the first case with the fields +l(x, t ) ,  &(x, t )  which 
are the usual functions and in the second case with Grassmann-valued fields +bl, $2. 

Let us note that equation (5.9) with y = -1, a = 1 and w = a  is equivalent to the 
equations of the massive Thirring model. Indeed, from equation (5.9), by introducing 
the quantity cp(x, t )  = aJ/(x, t)/ax, we obtain equation (5.12). Then if we introduce the 
fields and &, by formulae (5.13) we obtain equation (5.17). Therefore equations 
(5.9) and (5.17) represent different forms of description of the same nonlinear system. 

6. On the gauge equivalence of the bundle (1.1) to the linear bundle 

The gauge equivalence of various equations integrable by the IST method is very 
useful for the analysis of these equations (see Zakharov and Mikhailov 1978, Zakharov 
and Takhtadjan 1979). 
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It was noted by A V Mikhailov (see Gerdjikov et a1 1980) that the quadratic 
bundle (1.1) at N = M = 1,9 = 0, p = 0 is gauge equivalent to the linear bundle. Here 
we present a generalisation of Mikhailov's result. 

Let us consider the general bundle (1.1) with arbitrary N, M, p ,  q,  CY and p. Let 
us perform the gauge transformation 

i l(x,t ,A)+$(x,t ,A)= V(x,t,A)il(x,t,A) (6.1) 

&) where VI and V3 are square matrices of order N and M respectively, with V = (F; 
V2 is a rectangular M x N matrix, and they are equal to 

Here PX{exp J" dyf(y)} denotes a well known x-ordered exponent which is the solution 
of the matrix equation 

Let us note that 

It is not difficult to verify that under the gauge transformation (6.1), (6.2) the 
bundle (1.1) converts into the linear bundle 

where 

p =ah2+2PA, A=('" ) 
0 -Ihf 

and d, d are rectangular N x M and M x N matrices which are equal to 

(6.4) 

x Px{ exp [-: dy OR}. 
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The gauge transformation (6. l ) ,  (6.2) is the generalisation of Mikhailov’s gauge 
transformation to the case of the arbitrary quadratic bundle (1.1). At a = 0, /3 = 1 
the transformation (6.1)’ (6.2) is the identical one. 

In two cases the x-ordered exponent converts into the usual exponent and the 
transformation (6.1) is simplified. 
First case: M = N = 1. At q = 0 the matrices V1, VZ and V3 are 

a 
Vz=--(aA 2 +p)-”*exp(:I:_dyO(y, t)R(y, r))R(x, t )  (6.5) 

and for the potential of the linear bundle (6.3) we have 

Z 

d ( x ,  t)=(p2R(X,r)-qRz(x, a t)O(x, t )+-  aR(x’ - ‘)) exp( ia j x  dy OR). 
2 ax -m 

In the particular case p = 0 we obtain Mikhailov’s gauge transformation. 
For q = 1 the variables Q(x, t )  and R(x, t)  are Grassmann variables and 

Second case: N = 2, M = 1, p = 2 and 

0 0  cp 
P =  0 0 -cp+ jY -cp  0 i (6.9) 

where cp is a Grassmann variable. In this case due to (p(p = cp+cpt = qcp* + (p-cp = 0 we 
have 

and therefore matrices VI, Vz and V3 are equal to 

(6.10) 
a 

Vz = -- (ah +p)-’/’((p’, - c p ) ,  V3 = ( a h  +p)l/’, 2 
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d e f  1 0 where u3 = (o The potential P ( x ,  t )  of the linear bundle (6.3) is of the form 

where 

Let us attract attention to the fact that at P = 0 the two cases considered above 
are just those two cases for which the relativistic-invariant equations (5.10) are 
equivalent to the equations of the massive Thirring model (see 0 5 ) .  

Furthermore, in these two cases (first case: N = M = 1, q = 0, p = 0; second case: 
N = 2, M = 1, p = 2, p = 0 and potential P of the form (6.9)) the bundle (1.1) is gauge 
equivalent to the spectral problems which are used for integration of the massive 
Thirring model. The corresponding gauge transformations were given by Gerdjikov 
et a1 (1980) and Izergin and Kulish (1978). 

7. The structure of the Backlund transformations group 

In Q 3 it was shown that the transformations (3.3) with B = Bocu, and aB/at = 0 form 
an infinite-dimensional group of auto Backlund transformations (BT) for the equations 
(3.7). The arbitrary entire functions Bi(A') by which these BT are characterised can 
be represented in the form 

where the functions fi(A') have no zeros and n is some integer. By virtue of (7.1) 
the arbitrary BT B is a combination of BT of two types: 

B = BdB, 

where Bd is a discrete BT, i.e. the BT (3.3) with functions Bi(A')=n;=, (A+-Ai'),  
and B, is a continuous BT, i.e. the BT (3.3) with Bi(A') =f i (A' ) .  

Let us consider the discrete BT in more detail. Analogously to the case of the 
linear bundle (Konopelchenko 1979, 1981a, b), let us introduce the notion of the 
elementary BT (EBT). The EBT B:?) is the BT (3.3) with functions Bi equal to 
( r  = dim go( Y J  

B, (A+) = A+ - ~ g ) ,  B i z .  . .=B,-1 =B,+l =. . . = B ,  1. (7.2) 
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An arbitrary discrete BT is a product of EBT: 

(7.3) 

EBT are useful for investigation of the integrable equations (for the linear bundle 
see Konopelchenko (1981a, b)). Here we consider the simplest example N = M  = 1, 
4 = 0. In this case H1 = (h g), H2 = (g y ) ,  P(x, t )  = (‘l g) and we have two EBT: B i j ~  
and B$)L Let us consider first the EBT BY: (B1 = A+-Ao, B2= 1). With the use of 
the explicit form of the operator A+ and the relation 

from (3.3) we obtain the following system of equations which define the 
transformation B:: : 

where 

Using the identity Kl(x) = (1/l!)(Kl(x))’ ( I  = 1 , 2 , 3 ,  . . .I, one can rewrite the 
relations (7.4) in the form 

-! ”[ q’ exp( t K l ( x ) ) ]  + P 2  ;q’ exp( $Kl(x)) --q‘ P 2  -Aoq’ - q = 0, 
2 ax a 

-i 2 d [ r e x p ( ~ K l ( x ) ) ] - ~ r e x p ( ~ K l ( x ) ) + P 2 r + A o r + r ‘ = 0 .  ax a 

( 7 5 2 )  

(7.56) 

Integral terms in (7.5) can be transformed into local ones. Indeed, let us multiply 
the equality ( 7 . 5 ~ )  by r exp[hcuKl(x)], the equality (7.56) by q’ exp[haKl(x)], and 
then add the equalities obtained. As a result we have 

-i [ q‘r exp( 5 Kl(x))]  = ( rq  - r’q’) exp - K l ( x )  = -- - exp - Kl(x)  . (7.6) 2 ax (i2* ) 2i a a x  a (i2* ) 
From (7.6) one gets 

[ l - ( 1  -aq’(x)r(x))1/2]. (7.7) 
2 

exp -Kl(x)  = (i2* ) aq’(x)r(x) 

Substituting the equality (7.7) into (7.5), we finally obtain a system of relations 
which define the EBT Bib’ : 

(7.8) 
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In an analogous way one can calculate the EBT Bi: (Br E 1, B2 = A+ -Ao). It is 
of the form 

For a -0  the EBT (7.8) and (7.9) are reduced to the corresponding EBT for the 
linear bundle ( p  = 1) (Konopelchenko 1979, 1981a, b): 

--- a‘’ q f2r  - 2iAoq‘ - 2iq = 0, 
ax 2i 
ar 1 -+, r2q’ + 2iAor + 2ir’ = 0, 
ax 21 

B!iI)(P+P’): 

and 

--- a‘ q2r’- 2iAoq - 2iq’ = 0, 
ax 2i 
ar’ 1 -+, rr2q + 2iAor’+ 2ir = 0. 
ax 21 

B !i: (P + PI): 

The transformations (7.8) and (7.9) are the spatial parts of EBT and they are 
universal. The time parts of EBT are different for different equations (3.7) and their 
form can be found with the use of (7.8) or (7.9) and the explicit form of the equations. 

It is not difficult to show that the EBT (7.8) and (7.9) commute-B:ll)Bf$1 = 

BA~)BAL~). In particular BA,BA, - BA,BA, 1. Therefore Bi:,) = (Bi:)-’ and BL:)) = 12) 11) 11) 12) - 12) 11) = 

(B :: )-I .  

The simplest non-trivial non-elementary BT is 

def 
B A b l ) , A h 2 ) =  BY{,) * B22). 

The explicit form of this BT can be found with the use of (7.8) and (7.9) by the 
formulae 

BA;’ ) , A h 2 ) ( P  -+ P”) = Bfi2) (P’ -+ P”)Byli) (P + p’) = B yi) (p’ + p ) B  ($1 (p + p’), 

The transformation B*c),A~~) is given by the system of equations 

- 1 (20’ - ia ”) (q’K - :) - ( A  b” + $)q’ + ( A  b2) + $)q = 0,  
2a ax 

(7.10) 

2 a  ax 

where K(x )  = exp[$a jTm dy (rq - r’q’)]. This integral quantity K can be transformed 
into a local one. Namely, one can show that K is a solution of the algebraic equation 

a a a 

a 
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The explicit expression for K is cumbersome. We see that the simplest non-elementary 
BT is complicated enough and therefore the EBT are important. 

8. Elementary Backlund transformations, nonlinear superposition principle and 
solutions of the integrable equations 

The EBT is an effective tool for investigating the integrable equations. As we shall 
see, they allow us to construct an infinite family of solutions of equations (3.9) (at 
N = M = l , q = O ) .  

Let us note first that the EBT (7.8) and (7.9) after certain transformations can be 
rewritten in the form 

84’ P 2  4 i -+ (Aoq’ + q)(1 +I) -- (1 - I)q’  +- (rq + r’q’) = 0, 

i -- (Aor  + r’)(l +I) +- (1 - I)r-- (rq + r’q’)  = 0, 

ax a 2 
ar P 2  ar 
ax a 2 

B ::) (P + P’) : (8.1) 

where I = (1 - aq’r)l’’ and 

a4 P 2  ff4 i -+ ( A 0 4  +q’ ) ( l+  f) -- (1 - f ) q  +- (rq + r’q’)  = 0, 

i - - (her' + r ) (  1 + f) + - (1 - f ) r ’  - - (rq + r’q‘) = 0, 

ax a 2 
ar’ P 2  ar‘ 
ax a 2 

&?(P+P‘): (8 .2 )  

where f =  (1 -aqr’)l’’. 

diagram: 
The commutativity of the EBT can be represented in the form of the following 

(8.3) 

where ( 4 0 ,  ro),  (41, rl) ,  (42, r z ) ,  (q3, r3) are the solutions of the definite equation of the 
form (3.9). The product BF’B:’) of the EBT is given by the system of equations 
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de( 
where Iilir = (1 - aqir,)1’2. The transformation Bi l )BF)  is given by the equations 

The equations (8.4)-(8.7) are a consequence of the commutativity of the EBT. In 
the previous section we have already used the systems of equations (8.4H8.7) for 
finding the soliton BT. Here we obtain another interesting consequence of equations 

If one compares the first equations (8.4) and (8.5) and the second equations (8.6) 
(8.4)-(8.7). 

and (8.7), one obtains 

( A q i  + 4o)(1 + 1.10) - (CL41 + q 3 ) ( 1 +  113)  +a 41(110-113) + 2 (roqo-r3q3) = 0, P 2  aql 

(8.8) 
P Z  ar2 
a 2 (Arz+r3)(1 + ~ 3 2 ) - ( @ r 2 + r 0 ) ( 1 + 1 0 2 ) + - r 2 ( 1 3 2 - 1 0 2 ) - - ( r o q 0 - r 3 q 3 ) = 0 .  

Equations (8.8) form an algebraic system and they give us the possibility, with 
given (40, ro),  (ql, r l ) ,  ( q 2 ,  r z ) ,  to calculate (q3,  r3 )  by purely algebraic operations. Thus 
the relations (8.8) are just the nonlinear superposition principle for equations (3.9): 
with three given solutions (qo, I O ) ,  (ql, rl)  and ( q 2 ,  r2), it allows us to calculate the 
fourth solution (q3, t3) in a purely algebraic wayt. 

The relations (8.8) give us the possibility to calculate by purely algebraic operations 
the infinite family of solutions of equations (3.9) for M = N = 1, q = 0. Indeed, let us 
start from the trivial solution q = r = 0 which we denote by Po. Then let us act on 
this solution with all possible discrete BT (7.3) ( r  = 2). As a result we obtain the 
infinite family of solutions 

where n l  and n2 are arbitrary integers. 

(8.2). They are of the form 
The solutions P(n,,o, and P(o,n2) are easily found directly from formulae (8.1) and 

“ I  

k = l  
q ( n l . o ) =  1 exp[2iWh)t + 2iAk(x -Xok)l, r ( n l . 0 )  = 0, (8.10) 

+ Some nonlinear superposition formulae for certain integrable equations (e.g. sine-Gordon equation) are 
well known (see e.g. Miura 1976). 
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and 
“ 2  

k = l  
T ( ~ . , , ~ )  = 1 exp[-2ifVpk)t - 2ipk(x - i O k ) ]  (8.11) q(o,nz) = 0, 

where X 0 k  and i o k  are arbitrary constants. 
Using the solutions P(nl,o) and P(o,,,) we can calculate an arbitrary solution P(nl,n2) 

recursively with the help of the relations (8.8). Indeed, with given P(o.o,, P(l,o, and 
P(o,I) we find PuJ): 

(8.12) 

(8 .13)  

where 

and a and cpo are arbitrary constants. 
Further, from the solutions P(o,l), P(0,2) and P(l.l) with the use of formulae (8 .8 )  

we obtain P(1,2). From the solutions P(o,l), P(l,l),  P ( Z , ~ )  one obtains P(2.1). Then from 
the solutions P(l,l), P(l,2) and P(2,1) we find P(2.2). The continuation of this procedure 
gives us an arbitrary solution P(nl.n2). 

Let us emphasise that with the use of the procedure described above we can find 
the solutions of equation (3.9) with an arbitrary function R(L’). 

Let us note that the solution P(,,,,,,,) is an algebraic function of the solutions 
q(l,o), I . . , q(,,,.o) and r(0,1), . . . , r (~ . , , , )  i.e. of the plane waves. In other words, the 
solutions P(,,,,,,) of the nonlinear equations (3 .9 )  are nonlinear superpositions of the 
solutions of the corresponding linearising equations. 

The nonlinear superposition formulae (8.8) are simplified in the case a = 0, p = 1. 
In this case equations (8.8) are reduced to 

From (8.14) one obtains 

(8.14) 

(8 .15)  

Formulae (8 .15)  give the nonlinear superposition principle for equations (3.9) 
(for a = 0, N = M = 1, q = 0) integrable by the linear bundle (1 .1 )  (a = 0, p = 1, 
N = M =  1 ,  q=O). 
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9. Conclusion 

In the present paper we consider the general structure and properties of the equations 
integrable by the bundle (1.1) in the general position, i.e. when the quantities Q and 
R are independent. However the possible reductions of the general equations are of 
great interest too. Let us point out two simple reductions. 

First ( N  = M): 

O Q  
A = ( ”  0 - I N  ), ‘=(Q 0 ) .  

Second ( N  = M): 

A=(’” 0 - I N  O ) ,  P = ( l  y )  

(9.1) 

(9.2) 

where U is a square N x N matrix and IN is the N x N identity matrix. 
Under the reduction (9.1) the bundle 41.1) is equivalent to the buiidle 

a2X/ax2+(aA +p)’Q2x-i(aA +p)(aO/ax)x +(aA2+2pA)’x = 0 (9.3) 

where x = JI1 + J12. Under the reduction (9.2) the bundle (1.1) is equivalent to 

a 2 ~ , / a x 2 + ( a i  +p2)~ t+42+ i2~2=o  (9.4) 

where i zf ah2 + 2pA. 
The polynomial bundles (9.3) and (9.4) are generalisations of the well known 

spectral problems (with a = O ) .  The general form of the integrable equations (3.9) 
under the reductions (9.1) and (9.2) and their Hamiltonian structures will be considered 
elsewhere. 
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